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Realistic Measurement Situations

• Often, the measurement result z depends:

– not only on the measured value x, but also

– on the parameters s of the experiment’s setting

– and on the values of some auxiliary quantities y.

• The dependence z = f (x, s, y) is usually known.

• Ideal case: we know y, so we find x.

• Real case: we know y with some uncertainty.

• Usually: uncertainty in y leads to extra measurement

error in x.

• Good news: often, we can combine multiple measure-

ment results and decrease influence of y’s uncertainty.

• We get sub-noise measurement accuracy: better than

the accuracy with which we know y.
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Example: Multi-Spectral Imaging

• We measure ˜I(f, ~p ) = I(f, ~p ) + D(f, ~p ), where:

• I(f, ~p ) = C(f ) · I(~p ) is the intensity of the source

on frequency f at point p;

• D(f, ~p ) is the intensity of dust radiation.

• Often, D À I , so we cannot determine the object’s

structure.

• We know how D depends on f : D(f, ~p ) = D(~p ) ·fα.

• Here, x = I , s = f , y = D, and

z = f (x, s, y) = C(s) · x + y · sα.

• Based on two observations zi = C(si) · x + y · sα
i , we

can apply linear algebra ideas to eliminate y:

z1 · sα
2 − z2 · sα

1 = x · (C(s1) · sα
2 − C(s2) · sα

1 ).

• Result: we uncover previously unseen spiral and ring-

like structures in distant galaxies.
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VLBI Astrometry

• Very Large Baseline Interferometry (VLBI): we si-

multaneously observe a distant radiosource by two (or

more) radioantennas i, j.

• Ideal case: time delay between the two antennas

τi,j,k =
1

c
·~bi,j · ~sk.

• Synchronization is not perfect (∆ti 6= 0), hence

τi,j,k =
1

c
·~bi,j · ~sk + ∆ti −∆tj.

• Here, z = τ , x = ~sk, y = (~bi,j, ∆ti).

• Measurement error in τ corresponds to accuracy

≈ 0.001′′, but inaccuracy in ∆ti is much worse.

• Differential astrometry:

∆τi,j,k,l =
1

c
·~bi,j ·∆~sk,l,

where ∆τi,j,k,l
def= τi,j,k−τi,j,l, drastically improves the

accuracy.
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VLBI Astrometry: Arc Method

• To get rid of baseline vectors, we need 4 antennas:

∆τ1,2,k,l =
1

c
·~b1,2 ·∆~sk,l; ∆τ2,3,k,l =

1

c
·~b2,3 ·∆~sk,l,

∆τ3,4,k,l =
1

c
·~b3,4 ·∆~sk,l.

• For the dual basis ~Bi,j · 1

c
·~bi,j = δ(i,j),(i′,kj′), we get

~sk,l = ∆τ1,2,k,l · ~B1,2 + ∆τ2,3,k,l · ~B2,3 + ∆τ3,4,k,l · ~B3,4.

• Express ~Bi,j as a linear combination of ~s1,2, ~s1,3, ~s1,4.

• For any other source k, we have a similar expression

~sk,1 = ~sk−~s1 = ∆τ1,2,k,1· ~B1,2+∆τ2,3,k,1· ~B2,3+∆τ3,4,k,1· ~B3,4.

• Hence, ~sk is a linear combinations of ~s1,2, ~s1,3, ~s1,4.

• We have a linear transformation T between the actual

and the observed values ~sk.

• Since ‖~sk‖ = 1, T is rotation.

• So, we can determine positions modulo rotation.
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VLBI Imaging

• Problem: find the image I(~p ).

• Solution: find Fourier transform F (~b ) of I(~p ).

• Ideal case: the phase shift ϕ̃i,j between the signals

observed by antennas i and j is equal to the phase

ϕi,j of F (~bij).

• In reality: due to synchronization errors ∆ϕi,

ϕ̃i,j = ϕi,j + ∆ϕi −∆ϕj.

• Here, z = ϕ̃i,j, x = ϕi,j, y = ∆ϕi.

• Closure phase method eliminates the effect of the

auxiliary parameters by considering the “closure phase”

ϕ̃ij + ϕ̃jk + ϕ̃ki for which:

ϕ̃ij + ϕ̃jk + ϕ̃ki = ϕij + ϕjk + ϕki.
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Image Georeferencing

• Problem: find the relative orientation of geospatial

images I1(~p ) and I2(~p ).

• Problem reformulated: find shift, rotation angle, and

scaling between the images.

• Difficulty: to find an angle with accuracy of 1◦, we

need 360 tests; we need 4 parameters, so we need

3604 ≈ 109 tests – practically impossible.

• Idea: separate the problem – find rotation angle and

scaling separately from finding the shift.

• Fact: in Fourier domain, when I2(~p ) = I1(~p + ~a),

then F2(~ω) = F1(~ω) · exp(i · ~ω · ~a).

• Here, x = F (~ω), y = ~a.

• Solution: the shift-independent combination is the

absolute value |Fi(~ω)|.
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Measuring Strong Electric Currents

• Problem: measuring the cable current I at an alu-

minum plant.

• Specifics: I is difficult to measure directly.

• Specifics: I is measured by its magnetic field E.

• Ideal case (single cable): E = I/r, where r is the

distance between the sensor and the cable’s axis.

• Real plants: there is often an auxiliary nearby cable.

• Here, z = E, x = I , s = sensor locations,

y = location and current in the auxiliary cable.

• Difficulty: z = f (x, s, y) non-linearly depends on the

(unknown) location of the auxiliary cable.

• Solution: combining the measurements from different

sensors eliminates the influence of the auxiliary cable.
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Ultrasonic Non-Destructive Testing

(in brief)

• Problem: find the location and orientation of hidden

faults in a plate.

• Related active measurements:

– send ultrasonic Lamb waves to the plate;

– measure the waves that propagated along the plate.

• Difficulty: the resulting signals depend both on the

location and on the orientation of the fault.

• Idea: separate the effects of location and orientation.

• Solution: by appropriately combining sensor read-

ings, we can minimize the effect of location.

• Thus, we can easily determine the fault’s orientation.



10

University of Texas at El Paso

Formulation of the General Problem

• General problem:

• Objective: we are interested in nx scalar parame-

ters that form x.

• Measurement situation: each nz-component mea-

surement result z depends not only on x, but also

on ny components of the auxiliary quantity(-ies) y:

z = f (x, s, y).

• Desirable objective: determine x without knowing

y precisely.

• Two possible situations:

• y is fixed (cannot be varied), but we can change s.

Example: multi-spectral imaging.

• We cannot change the settings s, but we can use

different values of y. Example: VLBI astrometry.
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Variable Settings:

Analysis of the Problem

• Situation: after we performed the measurement in Ns

different settings s1, . . . , sNs, we get Ns measurement

results z1, . . . , zNs.

• Situation: we do not know y.

• Conclusion: select Ns so that we will be able to

uniquely determine both x and y.

• After Ns measurements, we have Ns nz-component

equations zi = f (x, si, y) to determine nx unknown

components of x and ny unknown components of y.

• Fact: # of equations must be ≥ # of unknowns.

• We have Ns·nz scalar equations for nx+ny unknowns.

• Recommendation: perform the measurements in at

least Ns ≥ (nx + ny)/nz different settings.
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Practical Question: How to Solve

the System of Equations?

• Difficulty: in general, the dependence z = f (x, y) is

non-linear.

• So, we have a system of non-linear equations.

• What helps: often, we know good approximations

x(0) and y(0) to x and y.

• How it helps:

– We only need to find ∆x def= x− x(0) and

∆y def= y − y(0).

– Usually, ∆x and ∆y are small.

– So, we can expand f (x, y) in Taylor series in ∆x

and ∆y and ignore 2nd and higher order terms.

– As a result, to find ∆x and ∆y, we get an easier-

to-solve system of linear equations.
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Variable Settings: Example

• Case study: multi-spectral astronomical imaging.

• Reminder: ˜I(f, ~p ) = C(f ) · I(~p ) + D(~p ) · fα.

• Here, z = ˜I , x = I , s = f , y = D, and

z = f (x, s, y) = C(s) · x + y · sα.

• Specifics: nz = 1, nx = 1, and ny = 1.

• General recommendation: we must have at least

(nx + ny)/nz = (1 + 1)/1 = 2 settings.

• Confirmation: we have shown that, based on mea-

surements in two different settings

z1 = C(s1) · x + y · sα
1 , z2 = C(s2) · x + y · sα

2 ,

we can uniquely determine the desired value x:

z1 · sα
2 − z2 · sα

1 = x · (C(s1) · sα
2 − C(s2) · sα

1 ).
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Different Values of y: Analysis

• General idea: we measure several (Nx) objects xi.

• General idea: we measure each object under several

(Ny) circumstances yj, j = 1, . . . , Ny.

• Based on the results zi,j = f (xi, yj) of these measure-

ments, we must be able to determine xi and yj.

• Example: in VLBI astrometry example, we observe

several sources xi by using several radiotelescopes yj.

• After Nx ·Ny measurements of z, we get nz ·Nx ·Ny

scalar equations.

• We must find Nx vectors xi with nx components/x.

• We must find Ny vectors yj with ny components/y.

• Recommendation: select Nx and Ny so that:

nz ·Nx ·Ny ≥ Nx · nx + Ny · ny.
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Different Values of y:

Good News and Bad News

• Recommendation: nz ·Nx ·Ny ≥ Nx · nx + Ny · ny.

• Good news: this inequality is true when Nx and Ny

are large enough.

• Good news: often, we know reasonably good approx-

imations x
(0)
i and y

(0)
j , so we can linearize.

• Bad news: sometimes, we cannot uniquely determine

xi and yj even for large Nx and Ny.

• Example: in astrometry, we cannot uniquely deter-

mine directions to the sources ~si.

• Reason: if we rotate all the directions ~si and ~bi,j, we

get the same time delays.

• What we can determine in this case: coordinates of

the sources ~si modulo rotations.
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How Can we Describe

Such Non-General Situations?

Enter Transformation Groups

• Problem:

– we measure all the objects x for all the values y,

– we cannot determine all the values x and y.

• Reformulation:

– even when we know all the values f (x, y),

– there exist values Tx(x) 6= x and Ty(y) 6= y for

which the measurement results are exactly the same:

f (x, y) = f (Tx(x), Ty(y)).

• Such pairs of transformations form a group G.

• We can only find x modulo transformations ∈ G.

• Example: in astrometry, we have rotations group.
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Thermal Challenge Problem: In Brief

• Objective: make sure that:

– for a manufacturing-related distribution of thermal

properties k and ρCp (as given by samples),

– for given time t, thickness L, and heat flux q,

– the probability P that a temperature T exceeds a

given threshold T0 should be ≥ 1− p0 (=0.99).

• We know: an approximate model T ≈ f (k, ρCp, t, L, q).

• Complexity: it is difficult to measure T for high q.

• We have performed:

– several experiments for smaller q, and

– one extra (accreditation) experiment for a large q.

• Problem: use the known data to check whether

P def= Prob(T ≤ T0) ≥ 1− p0.
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Thermal Challenge Problem

• How this problems fits into our general framework:

– measured quantity z: temperature z = T ;

– known auxiliary quantity: time s1 = t;

– unknown auxiliary quantities: y1 = k, y2 = ρCp;

– we know the ≈ dependence z1 ≈ f (s1, y1, y2).

• Additional complexity: the model is only approxi-

mate:
∣∣∣∣∣z

(k) − f (s
(k)
1 , y

(k)
1 , y

(k)
2 )

∣∣∣∣∣ ≤ ε

for some (unknown) accuracy ε.

• Natural idea: once, for a sample, we know z(k) = T

for different moments t = s(k), we find y1 and y2 for

which ε → min, where:

∣∣∣∣∣z
(k) − f (s

(k)
1 , y1, y2)

∣∣∣∣∣ ≤ ε.
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How to Implement the Above Idea

• Linearizable case: we know approximate values y
(0)
1

and y
(0)
2 such that the differences ∆yi

def= yi− y
(0)
i are

small (hence quadratic terms can be ignored).

• Resulting solution: solve a linear programming prob-

lem

ε → min

under the conditions

−ε ≤ z(k)−f (s(k), y
(0)
1 , y

(0)
2 )− ∂f

∂y1
·∆y1− ∂f

∂y2
·∆y2 ≤ ε.

• General case– use Newton’s approach:

– we solve a linearized system, find ∆yi; then

– we take y
(0)
i + ∆yi as a new initial approximation;

– repeat until the process converges.
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Solving the Thermal Challenge

Problem: First Approximation

• Objective: check that for given s, y1, and y2, we have

z ≤ z0 with probability ≥ 1− p0 (=0.99).

• Preliminary analysis: for each object v, we use the

records Tv(t) to find y1 = k, y2 = ρCp, and εv.

• Gauging the model’s accuracy: we take ε def= max
v

εv

as the measure of the model’s accuracy.

• Reformulating the objective: check that

P0
def= Prob(f (s, y1, y2) ≤ z0 − ε) ≥ 1− p0.

• Assumption: y1, y2 are independent normally dis-

tributed; we find means and st. dev. from given data.

• Resulting approach: for these normal distributions,

we check whether P0 ≥ 1− p0 by using linearization

(when z is also normal) or Monte-Carlo simulations.
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Towards More Accurate Description

• Fact:

– for some values of the parameters si, measurements

are easier;

– for some, they are more difficult.

• Example: for the thermal challenge problem, this pa-

rameter is the thermal flow s2 = q.

• Consequence: we have more data for easier-to-measure

values.

• Consequence: the model is more accurate for easier-

to-measure values of the parameters

• How to take this fact into account:

– instead of a single measure ε of the model’s accu-

racy ε,

– we explicitly consider the dependence ε(s2, . . .).
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Towards More Accurate Description:

Specific Implementation

• Selecting a model for ε(q): due to scale-invariance,

we take ε(q) = ε0 · qα for some ε0 and α.

• Preliminary analysis: for each experimentally tested

q, based on all samples with given q, we find

ε(q) = max
v:q(v)=q

ε(v).

• Estimating parameters of the ε(q) model: we must

find ε0 and α for which ε(q) ≈ ε0 · qα.

• Algorithm: we use the Least Squares method (LSM)

to solve a system of linear equations

ln(ε(q)) ≈ ln(ε0) + α · ln(q)

with unknowns ln(ε0) and α.

• Final step: we use the accreditation experiment to

improve the accuracy of the ε(q) model.
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Additional Idea:

How to Simplify Computations

• Fact: in the given formula

T (x, t) = Ti+
q · L
k
·


(k/ρCp) · t

L2
+

1

3
− x

L
+

1

2
·



x

L



2−

2

π2
· 6∑

n=1

1

n2
· e−n2·π2·(k/ρCp)·t

L2 · cos

n · π · x

L







ρCp always appears in a ratio
k/ρCp

L2
.

• Resulting idea:

– instead of y1 = k and y2 = ρCp,

– we should use y1 =
q · L
k

and y2 =
k/ρCp

L2
:

T (x, t) = Ti + y1 ·

y2 · t +

1

3
− x0 +

1

2
· x2

0−
2

π2
· 6∑

n=1

1

n2
· e−n2·π2·y2·t · cos(n · π · x0)


 ,

where x0
def=

x

L
.
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From Validating a Model to

Improving a Model

• Assumption: the formula assumes that y1 = k and

y2 = ρCp are constants.

• Fact: the average value k̄ of y1 = k grows with tem-

perature T :

T 20 250 500 750 1000

k̄ 0.49 0.59 0.63 0.69 0.75

• Natural conclusion: y1 is a function of T ; example:

y1 ≈ a + b · T ; LSM: a ≈ 0.63, b ≈ 0.06

250
.

• Resulting idea: plug in y1(T ) = y1(20) + b · T into

the original formula and hope for the better fit.

• Another idea: try to match the difference between z

and f (s, y1, y2) by an empirical model.

• Example: try a linear dependence for this difference.
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